close
1.

Article

Article
新村, 末雄 ; 大樌, 香苗
Published: 新潟大学農学部研究報告 — 新潟大学農学部研究報告.  58  pp.39-43,  2005-08.  新潟大学農学部
Full Text Link: http://hdl.handle.net/10191/657
Abstract: 体外で成熟過程にあるブタの卵母細胞、1細胞期から拡張胚盤胞期までの体外受精に由来するブタの卵子と初期胚について、グルコース-6-リン酸脱水素酵素(G-6-PDH)の活性を組織化学的に検出した。G-6-PDH活性は、胞状卵胞から採取直後の卵母 細胞では強く、この強い活性は培養後44時間の卵母細胞まで維持された。また、この酵素の活性は、媒精後の受精卵子でも強かったが、2細胞期から16細胞期の胚ではやや弱まり、弱度ないし強度となった。桑実胚期以降、酵素活性はさらに弱まり、活性を示さない胚も出現するとともに、拡張胚盤胞では活性はまったくみられなかった。以上の結果と従来のステロイド代謝能の結果とを考え合わせると、成熟過程にあるブタの卵母細胞と発生過程にあるブタの初期胚は、G-6-PDHの作用によって産生したNADPHをステロイドの生合成のために利用していることが推察された。The activity of gucose-6-phosphate dehydrogenase (G-6-PDH) in porcine oocytes and embryos was histochemically examined by the Rudolph and Klein method. Strong activity of G-6-PDH was observed in oocytes cultured for maturation and in fertilized oocytes, and blue diformazan granules produced by the enzyme reaction were spread evenly throughout the cytoplasm. In embryos, the activity somewhat decreased at the 2-cell stage, and the such activity was maintained up to the 16-cell stage. The activity weakened in embryos at the morula and early blastocyst stages, and some of them showed no enzyme activity. The enzyme activity completely disappeared from expanded blastocysts. In cleaved embryos, diformazan granules were distributed throughout the cytoplasm of blastomeres, while the amount of the granules differed among blastomeres. In early blastocysts, the granules were distributed in the cytoplasm of inner-cell-mass cells, but not in the cytoplasm of trophoblasts. The results obtained from this investigation and former studies concerning steroid metabolism seem to suggest that porcine oocytes and preimplantation embryos utilize NADPH produced by G-6-PDH for biosynthesis of steroids. Read more
2.

Article

Article
新村, 末雄 ; 斎藤, 千智
Published: 新潟大学農学部研究報告 — 新潟大学農学部研究報告.  56  pp.17-24,  2003-08.  新潟大学農学部
Full Text Link: http://hdl.handle.net/10191/25126
Abstract: cAMPの分解酵素であるホスホジエステラーゼの活性を阻害する作用を有する3-イソブチル-1-メチルキサンチン(IBMX)で処置したマウス卵母細胞について, 核の成熟状態を観察するとともに, 20α-ヒドロキシステロイド脱水素酵素(20α-H SD)の活性を調べ, 卵母細胞の核の成熟と細胞質での20α-ヒドロキシプロゲステロン代謝との関係の有無を検討した。成熟分裂を再開した卵母細胞の割合は, 50μMの濃度のIBMXで処置したものでは3.0%であり, IBMX処置していない対照の卵母細胞の100%(こ比べ, 有意に低かった。一方, 20α-HSD活性は, IBMX処置した卵母細胞と対照の無処置卵母細胞のすべてに認められ, 両者の間で活性に相違はみられなかった。以上の結果から, マウス卵母細胞の核の成熟と細胞質での20α-ヒドロキシプロゲステロン代謝との間には関係のないことが確認された。<br />The state of nuclear maturation and the activity of 20α-hydroxysteroid dehydrogenase (20α-HSD) were observed in mouse oocytes treated with 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of 3', 5'-cyclic nucleotide phosphodiesterase, and the relationship between nuclear maturation and 20α-hydroxyprogesterone metabolism in the cytoplasm was examined. Nuclei of the oocytes cultured with 50μM IBMX for 8 hrs were almost in the germinal vesicle stage (97%), while those of control oocytes cultured without IBMX were in the metaphase I to telophase I stages, mostly metaphase I stage (68%). The percentage of oocytes in the germinal vesicle stage was significantly higher in the IBMX-treated group than in control group. On the other hand, the activity of 20α-HSDwas demonstrated in all oocytes of both IBMX-treated and non-treated groups. From the present findings, it was confirmed in mouse oocytes that the 20α-hydroxyprogesterone metabolism in the cytoplasm is not related to nuclear maturation. Read more
3.

Article

Article
新村, 末雄
Published: 新潟大学農学部研究報告 — 新潟大学農学部研究報告.  48  pp.37-42,  1996-03.  新潟大学農学部
Full Text Link: http://hdl.handle.net/10191/17324
Abstract: 卵核胞期のウシの卵胞卵子,卵胞卵子を体外で成熟させた未受精卵子とこれを体外で受精させたのち培養して発生させた精子侵入期の卵子から孵化胚盤胞期までの胚について,グリコゲソ含量とα-Glycerophosphate dehydrogenase( α-GDH)活性を組織化学的に調べた。グリコゲン穎粒は,1細胞期の卵子から拡張胚盤胞期までの胚では細胞質に常に多量含まれていたが,孵化胚盤胞では減少した。またα-GDH活性は,1細胞期の卵子から拡張胚盤胞期までの胚では中等度であったが,孵化胚盤胞では弱かった。<br />The amount of glycogen granules and the activity of α-glycerophosphate dehydrogenase (α-GDH) were histochemically examined in bovine eggs matured in vitro, and in embryos from the 2-cell to hatched blastocyst stages developed in vitro. For the demonstration of glycogen, eggs and embryos were treated with the periodic acid-Schiff with or without a preceding salivary test. The activity of α-GDH was demonstrated by the method of BARKA and ANDERSON. The amount of glycogen granules was abundant in 1-cell eggs at the germinal vesicle, unfertilized and sperm-penetrated stages, and in embryos from the 2-cell to expanded blastocyst stages, but less in hatched blastocysts. The activity ofα-GDH was moderate in eggs and embryos at the stages from 1-cell to expanded blastocyst, but weak in hatched blastocysts. Read more
4.

Article

Article
保住, 功
Published: 新潟医学会雑誌 — 新潟医学会雑誌.  101  pp.433-442,  1987-07.  新潟医学会
Full Text Link: http://hdl.handle.net/10191/36532
Abstract: Fabry's disease is an X-linked disorder of glycosphingolipid catabolism. It is uncommon for female heterozygotes to show major clinical manifestations seen in hemizygotes. We have experienced a heterozygotic patient with cardiomyopathy and severe pain in the extremities. To elucidate the difference in clinical expressions between the symptomatic heterozygote and hemizygotes, we examined the spinal and sympathetic ganglia, heart, liver and kidney histochemically and biochemically and observed the accumulation of glycolipids in these organs of the heterozygote, which was similar to the hemizygote. Quantative analyses revealed marked accumulation of ceramide trihexoside (CTH) in the heart of the heterozygote, which was in contrast to predominant accumulation of CTH and ceramide dihexoside (CDH) in the kidney of the hemizygote. Digalactosyl ceramide was shown to be predominantly accumulated in CDH fraction obtained from sympathetic ganglia of the heterozygote. The α-galactosidase activity of the heterozygote was decreased to 16-40% of normal levels in various organs, especially in the heart. Two other heterozygotic patients were identified by low α-galactosidase activity and the cardiac involvement was demonstrated, although they did not have clinically evident cardiomyopathy. The difference in phenotypic expressions between sex can not be explained and further genetic study is necessary to explain it. Read more